Project : Mean-reverting strategy

Kilian Wan
August 3, 2025

1 Introduction

This report presents a personal project aimed at exploring the logic and implementation of
mean-reverting trading strategies, particularly in the context of pair trading. the objective
is not to develop a high-performance trading algorithm, but rather to become more familiar
with the practical steps involved in financial strategy research.

As one of my first projects in this area, I chose to focus on relatively simple strategy
involving two highly correlated stocks. Throughout the process, I spent time reading papers
and online resources to better understand key statistical concepts such as stationarity,
cointegration etc. I also documented many definitions and mathematical derivations, which
may make this report longer than a typical implementation report, but which reflect the
pedagogical nature of the project.

Ultimately, this work helped me solidify both theoretical and coding foundations, and
serves as a base for more complex or realistic trading models in the future.

The full coded in this project—including data loading, strategy logic and plotting, is
available in the following Github repository : [link]

2 Data

The data is downloaded from Kaggle [1]. For this strategy, we choose the ticks KO (Coca-
Cola) and PEP (Pepsi). These two companies operate in the same sector and often display
highly correlated price movements, making them a natural candidate pair for testing a
mean-reversion hypothesis.

While only this single pair is analyzed in this report, the same framework could be
extended to other stock pairs to evaluate robustness and generalizability of the strategy.

3 Pairs trading strategy

First, to test if the pairs trading strategy works, we need to perform a Augmented Dickey
Fuller (ADF) test. This test serves the purpose of finding out which stocks can be paired

1

https://github.com/kilianwan/mean_reverting_strat

3.1 Checking for stationarity

together in the pairs trading strategy.

We first explain the essential terms used in the ADF test. The first term is stationary
time series. Stationarity means that the statistical properties of a time series, i.e., mean,
variance and covariance do not change over time, which implies that the time series has
no unit root. Mathematically, it means that for any ¢,s,7 € T (time points), E[X;] = p,
Var(X;) = 0% < w and E[X; X; .| = E[X,X,,,].

So in the case of stationarity, trading signals are generated assuming that the prices of
both stocks will revert to the mean eventually. Hence, we can take the advantage of the
prices that deviate from the mean for a short period of time.

A unit root is a characteristic of a time series that makes it non-stationary. Mathematically
speaking, a unit root is said to exist in a time series of the value of & = 1 in the below
equation :

Y, =aY, 1+ 08X, + ¢

where Y; is the value of the time series at time ¢ and X, is an exogenous variable.

The ADF test is based on the two following hypothesis : (i) the null hypothesis Hy
states that there exists a unit root in the time series and is non-stationary and (ii) the
alternative hypothesis H, states that there exists no unit root in the time series and is
stationary or trend stationary.

So if there is a unit root present in the time series, it implies that the time series
is non-stationary and the stocks are not co-integrated. Hence, stocks cannot be traded
together.

Alternatively, if the null hypothesis gets rejected and the stocks show co-integration; it
implies that the time series is stationary and the stocks can be traded.

3.1 Checking for stationarity

We define the function adftest in Python, which returns whether the null hypothesis is
rejected or not. We obtain the following values for both stocks :

Stock t-statistic p-value
KO 2.232 0.999
PEP 2.284 2 0.999

TABLE 1: Values of the ADF test

From Table 1, we clearly see that for both stocks, we fail to reject the null hypothesis.

We now need to check if both stocks are co-integrated. To this end, we have to check
whether the spread (at time t), defined as KO, — /3 - PEP;, is stationary or not. Here f3 is
the slope of the regression of PEP on KO, called the hedge ratio. Another way of defining

3.2 Building the Trading Signal

the spread is via the log-regression, rather than the simple linear regression, that is :
logKO; — (5 - log PEP;. For simplicity, we call the slope of the log-regression, the log-hedge
ratio and the spread, the log-spread. We test both linear and log for the spread, and check
which one gives us the co-integration. By performing the ADF test on both spread and
log-spread, we obtain that only the spread is stationary (p—value < 0.05). So we use the
traditional spread in our strategy.

This shows that both stocks are co-integrated.

3.2 Building the Trading Signal
3.2.1 Computing the Z-score

Now that we have shown that both stocks are co-integrated, we calculate the z-score of
the spread using a rolling window. Formally, we let s; := spread, = KO; — 3 - PEP; be the
spread at time ¢. We choose a window size w of 30 days (so one month). We compute the
rolling mean and rolling standard deviation, defined as:

fy = mean(S;_yi1,---,5¢), 0p=Std(Si—wi1,---,St)
We then compute the z-score using the following formula :

St — Mt
Zt =
J¢

which yields a normal distribution with mean of 0 and standard deviation of 1.
Since we're using a rolling window of 30, we have to drop the first 30 elements of the
vector z;, since they have no value.

3.2.2 Trading Rules and Signal Logic

Now the goal is to use the z-scores to generate trading signals, that is open positions when
the spread diverges significantly from its mean (i.e., when |z is large), and close positions
when the z-score reverts close enough to zero (i.e., when z; ~ 0). To see this, when
the spread is large and positive, KO is too high relative to PEP. This means that KO is
overvalued. When the spread is large and negative, KO is too low relative to PEP, and
so is undervalued. The z-score just tells us how far the spread is from its typical rolling
mean, in units of standard deviation.

More precisely, when we open a position, it means we enter a trade, that is we start
holding stocks (either long or short) based on our signal. There are two types of actions.
First, the Long KO / Short PEP (LK/SP), where we buy KO shares and sell PEP shares
we don’t own. The second is the Short KO / Long PEP (SK/LP), where we sell KO shares
and buy PEP shares.

To close a position means that we reverse the previous trades to exist the market. So
for example, if the previous position was LK/SP, now the action to close is sell KO, and
buy back PEP. And if the previous position was SK/LP, we buy KO and sell PEP.

3

3.2 Building the Trading Signal

3.2.3 Encoding Positions

But how can we track the positions in the strategy? We can define a simple variable
position where :

e 0 = flat (no trade),
. +1=LK/SP,
. —1=SK/LP.

The following table resumes the previous paragraphs :

Current z-score Action New position
2z > 1 Open SK/LP —1
z < —1 Open LK/SP +1
—1<z<landz#0 Hold c':u‘rrent No change
position

TABLE 2: Strategy

So it only enter trades when z; is beyond thresholds (in our case £1). Only exit trades
when z; crosses back toward 0 (e.g. |2z;| < 0.1). Otherwise hold the current position.

3.2.4 Strategy Returns

Once we have our position vector, we compute the strategy returns. At each time ¢, we
want to know how much profit and loss did we make today, based on the position we held
yesterday.

Let’s define X0 as the return of KO from ¢ — 1 to ¢, and 7F*F as the return of PEP
from ¢ — 1 to ¢, with position[t — 1] is the position held on day ¢t — 1. So we have the
following three cases:

o position = 1 (LK/SP) : strat_return, = rK© — yFEP
e position = -1 (SK/LP) : strat_return, = —rK® 4 yFEP
e position = 0 : strat_return, = 0.

This assumes equal capital allocation to both legs of the trade.

Using the formulae above, we compute the daily returns of our strategy for each day
based on the position held the day before. These returns are used to build the cumulative
performance of the strategy, as well as to compute various metrics (in our case, total return
and Sharpe Ratio), which are presented in the next section.

4

4 Performance

4.1 Equity curve

We first analyze the equity curve, which tracks the evolution of the cumulative returns
over time. This curve is generated by compounding the daily strategy returns. It shows a
hypothetical $1 investment would have grown if fully allocated to the strategy.

By plotting this curve, we can visually assess when the strategy performs well, when it
stagnates, and whether it suffers significant drawdowns.

4.2 Sharpe Ratio

To evaluate the risk-adjusted performance of the strategy, we compute the Sharpe Ratio.
Since we work with daily returns and assume zero risk-free, the Sharpe Ratio is computed
as

E[Rs]

Sh Ratio = ————
arpe Ratio std(Rs)

where Rg is the strategy returns. A higher Sharpe Ratio indicates that the strategy
produces more return per unit of risk.

4.3 Grid search for optimal parameters

To understand how different entry and exit thresholds affect the performance, we conduct

a grid search over a range of thresholds pairs. For each combination, we compute the total
return and Sharpe Ratio.

This produces a table of results, which we visualize as a heatmap (See Figure 4.1 below).
The heatmap helps identify which combinations of parameters yield the best performance.

Heatmap of Sharpe Ratios

-0.0098 0.0094 0.0022 0.0027
-0.005

- 0.000

- —0.005

Entry Threshold

g- —0.010

-0.015

—0.020
0 |
0.25 0.5 1.0

Exit Threshold

F1a. 4.1: Sharpe Ratios for different entry/exit threshold combinations

From Figure 4.1, we observe that the pair of parameters that maximize the Sharpe
Ratio is the pair [2.5,0.05]. We now plot the equity curve of the strategy using these
optimal parameters:

Equity Curve of Mean-Reversion Strategy

2.50 1 —— Equity Curve

= Lo R ™
wn ~ =] N
=] w S w

Cumulative Return

24
)
v

0 2000 4000 6000 8000 10000 12000
Date

F1G. 4.2: Equity curve of the mean-reversion strategy using optimal parameters

Despite some fluctuations, we can see periods of strong performance with some drawdowns,
highlighting the risks and limitations of a simple threshold-based strategy.

5 Discussion and Conclusion

In this project we have implemented a basic mean-reversion strategy using a pairs trading
approach on Coca-Cola (KO) and PepsiCo (PEP). By testing for stationarity with the ADF
test and confirming cointegration, we justified the use of a spread-based signal. A rolling
z-score was used to identify trading opportunities when the spread diverged significantly
from its historical mean.

We encoded a simple position management system and evaluated strategy returns under
various entry and exit thresholds. The grid search over hyperparameters revealed that the
most profitable setup, in terms of Sharpe Ratio, corresponded to a entry/exit threshold of
(2.5,0.05). the corresponding equity curve demonstrates some profitability but also notable
drawdowns and volatility.

While the strategy performs reasonably under certain conditions, several limitations
should be acknowledged:

« Transaction costs and slippage! were not accounted for and would likely reduce
profitability in a real-world setting.

o The strategy assumes instant execution and equal capital allocation, which may not
hold in practice.

IDifference between the expected price of a trade and the price at which the trade is executed.

REFERENCES

o The strategy is based on historical price behavior of only two stocks—further analysis
with larger dynamic pair selection would be necessary for generalization.

o The thresholds were optimized on past data; without walk-forward testing or OOS
validation, there is risk of overfitting.

References

[1] Erik Hallmar. Daily Historical Stock Prices (1970-2018). https://www.kaggle.com/
datasets/ehallmar/daily-historical-stock-prices-1970-2018. Accessed July
30, 2025. 2018.

https://www.kaggle.com/datasets/ehallmar/daily-historical-stock-prices-1970-2018
https://www.kaggle.com/datasets/ehallmar/daily-historical-stock-prices-1970-2018

	Introduction
	Data
	Pairs trading strategy
	Checking for stationarity
	Building the Trading Signal
	Computing the Z-score
	Trading Rules and Signal Logic
	Encoding Positions
	Strategy Returns

	Performance
	Equity curve
	Sharpe Ratio
	Grid search for optimal parameters

	Discussion and Conclusion

