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Abstract

This Bachelor project investigates B-splines, a type of piecewise polynomial function widely used
in mathematical modelling and numerical approximation. The study focuses on understanding
the mathematical properties of B-splines, such as their local support, continuity, and partition of
unity, which contribute to their efficiency and flexibility in various applications. Additionally, the
project explores a general theorem by Huang (1998) on the rate of convergence of functions to
their approximations within orthogonal projections, and discusses the conditions and factors that
influence this convergence. We provide detailed proofs of this result, which are not presented
in Huang’s paper, using various notions, such as functional analysis. Practical applications are
demonstrated through implementing B-splines in R, showing their effectiveness in data smoothing
and functional approximation. The results highlight the versatility and robustness of B-splines in
solving complex mathematical and statistical problems.
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1 Introduction

This section provides an introduction and definitions of the B-splines. In the
first subsection we will see the intuition behind the B-splines, more concrete
definitions and properties that this basis satisfies. A significant portion of our
study relies on Kagerer (2013)’s article, which provides an in-depth introduction
to B-splines and their use in regression analysis. Kagerer discusses the construction
of B-splines, their mathematical properties and applications in statistical modeling.
Her work serves as a reference for understanding B-splines. In addition to our
primary focus on B-splines, we also mention the work of Eilers and Marx (1996)
in penalized splines, which are widely used due to their ability to handle overfitting
and provide smoother estimates. Penalty splines add a penalty to term to the
fitting process, balancing the fit and smoothness of the spline. However, in this
report, we will only concentrate on unpenalized splines, emphasizing the
theoretical aspects and applications of B-splines without additional penalties. In
the second subsection, we will concentrate on the application of this basis, such
as regression and combination of B-splines.

1.1 B-Splines

In this preliminary subsection, we will discuss the definition and intuition behind
B-splines. In essence, the functions from the B-spline basis are piecewise
polynomial functions of order k, connected in a special way. They are connected
at the knots and have a small support. First, let’s see what knots are. We say
that κ :“ tκi : 1 ď i ď mu,m P N is a knot sequence if it is a non-decreasing
sequence of real numbers, i.e. κ “ tκ1 ď κ2 ď ¨ ¨ ¨ ď κmu, where the elements
κi are called the knots. A characteristic feature of knots is that they can have a
multiplicity, denoted as mj, that means that κj “ ¨ ¨ ¨ “ κj`mj´1, indicating that
the knot repeats over some interval.

Once the knots are given, it is easy to compute the B-splines recursively, for
any degree of the polynomial. To do so, we can use de Boor’s relation. Before
using this relation, let’s get some intuition of these B-splines of small degree using
Figure 1 from Eilers and Marx (1996).

We observe one B-spline of degree 1 on the left of Figure 1(a). It is composed
of two linear pieces : the first one from x1 to x2, and the second one from x2 to
x3. Moreover, to the left of x1 and to the right of x3 this B-spline is zero. In other
terms, its support is rx1, x3s and it connects the knot x1 to the knot x3. On the
right of Figure 1(a), we have three more B-splines of degree 1.

Let’s increase the degree of the B-spline. In the left part of Figure 1(b), a B-
spline of degree 2 is shown. It is composed of three quadratics pieces, joined
at two knots. At the joining points not only the ordinates of the polynomial
pieces match, but also their first derivatives are equal — however not their second
derivatives. The B-spline is based on four adjacent knots : x1, . . . , x4. Furthermore,
in the right of Figure 1(b), we have three some B-splines of degree 2.
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1.1 B-Splines

FIG. 1. Illustrations of one isolated B-spline and several overlapping ones paq degree 1; pbq degree 2.

REMARK. The B-splines overlap each other : first-degree B-splines overlap
with two neighbors, second-degree B-splines with four neighbors and so on.

Now we have all the definitions to derive the B-spline basis of order k. First,
let κ :“ pκ´pk´1q, . . . , κm`kq be a knot sequence where each knot has at most
multiplicity k (i.e. κj ‰ κj`k). The two boundary knots κ0 and κm`1 define the
interval of interest and the m knots κ1, . . . , κm are the inner knots. Moreover,
the remaining 2pk ´ 1q exterior knots — before κ0 : κ´pk´1q, . . . , κ´1 and after
κm`1 : κm`2, . . . , κm`k — are required to ensure a good behaviour on rκ0, κm`1s.
Now we define the B-spline using the recurrence relation from de Boor (1978,
p.90) and the notation of Kagerer (2013):

DEFINITION (B-spline). The B-spline basis functions of order k ą 1, denoted
as Bκ,k

j , are defined as follow:

Bκ,k
j pxq “

x ´ κj

κj`k´1 ´ κj

Bκ,k´1
j pxq ´

x ´ κj`k

κj`k ´ κj`1

Bκ,k´1
j`1 pxq, (1.1)

where

Bκ,1
j pxq “ pκj`1 ´ xq

0
` ´ pκj ´ xq

0
` “

"

1 for κj ď x ă κj`1

0 otherwise
(1.2)

is the B-spline of order 1, and j “ ´pk ´ 1q, . . . ,m.
Having defined B-splines, we now turn our attention to their key properties,
which underpin their utility and versatility in computational and mathematical
contexts. In the upcoming discussion, we will explore essential properties such as
local support, continuity, and combinations of B-splines:

PROPOSITION 1 (Properties of B-splines).

(i) They form a partition of unity on the interval rκ0, κm`1s:
m
ÿ

j“´pk´1q

Bκ,k
j pxq “ 1.

(ii) The support of the function Bκ,k
j is the interval pκj, κj`kq. Hence, for |d| ě k,

we have :
Bκ,k

j pxq ¨ Bκ,k
j`dpxq “ 0.
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1.1 B-Splines

(iii) B-splines are up to pk ´ mj ´ 1q–times continuously differentiable at the knot
κj. Moreover, the pk ´ mjq–th derivative has a jump at κj, where mj is the
multiplicity of κj.

(iv) Linear combinations of the basis functions are also pk´mj´1q–times continuously
differentiable at the knot κj. They are of the form

Bκ,k
α pxq “

m
ÿ

j“´pk´1q

αj ¨ Bκ,k
j pxq

where α “ pα´pk´1q, . . . , αmqJ.

REMARK. The linear combination of the B-spline basis functions of order k
can generate all polynomial functions of degree smaller than k on rκ0, κm`1s. See
Figure 2.

Now that we have established the fundamental properties of B-splines, we will
take a better look at the third property of Proposition 1. We have seen that B-
splines are continuously differentiable, so we will give the formula of Kagerer
(2013) for the first order derivative:

THEOREM 2 (First derivative of the B-spline functions). The first order derivative
of the B-spline functions is the following :

BBκ,k
j pxq

Bx
“

k ´ 1

κj`k´1 ´ κj

Bκ,k´1
j pxq ´

k ´ 1

κj`k ´ κj`1

Bκ,k´1
j`1 pxq (1.3)

for k ą 1. Using the expression (1.2), we see that for k “ 1, the first order
derivative is equal to 0. Moreover, as the derivative of a B-spline of order k is a
linear combination of B-splines of order k´1, it is actually a B-spline of order k´1.
In addition, from Equation (1.3), one can show that the first derivative of a spline
as a linear combination of the B-spline functions is given by

BBκ,j
α pxq

Bx
“

B

Bx

m
ÿ

j“´pk´1q

αj ¨ Bκ,k
j pxq (1.4)

“ pk ´ 1q

m
ÿ

j“´pk´1q

αj ´ αj´1

κj`k´1 ´ κj

Bκ,k´1
j pxq,

where α´pk´1q´1 :“ 0 “: αm`1 by de Boor (1978, p.116).
For equidistant knot sequences, we can simplify Equations (1.3) and (1.4) as

follows:
BBκ,k

j pxq

Bx
“

1

h
Bκ,k´1

j pxq ´
1

h
Bκ,k´1

j`1 pxq

and
BBκ,j

α pxq

Bx
“

1

h

m
ÿ

j“´pk´1q

pαj ´ αj´1qB
κ,k´1
j pxq
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1.2 Some examples and plots of B-splines

respectively on rκ0, κm`1s. This concludes this introduction to B-splines. We will
now study some practical examples.

1.2 Some examples and plots of B-splines

First, we see some examples of the behaviour of the B-splines when the order is
not the same. We also check some properties mentionned above. For example,
the first line of Figure 2, we observe that, as seen in Proposition 1 (i), they form
a partition of the unity on the interval rκ0, κm`1s, that is the sum of the basis
functions is one. We also look at some combinations of B-splines. The previous
remark is also studied, showing the versatility of the B-splines.

Figure 2 shows examples of the B-splines with different orders k and with m
equidistant inner knots.

FIG. 2. B-spline basis and linear combinations for different orders k and m “ 3. First row: B-spline
basis functions of order 1, 2, 3 and 4 with equidistant knots, and their sum on rκ0, κm`1s. Second row:
B-spline basis functions of order 1, 2, 3 and 4 with equidistant knots, weighted such that their sum is a
polynomial of degree k ´ 1 on rκ0, κm`1s.

EXAMPLE. This first example uses the motorcycle data. The motorcycle data
set with n “ 133 observations has two variables describing a simulated motorcycle
accident for a test of crash helmets. The two variables are times and accel. We
plot the estimated regression curve of the following model in Figure 3:

accel “

m
ÿ

j“´pk´1q

αjB
κ,k
j ptimesq ` ϵ

where k is the degree, m “ 8 is the number of inner knots in some knot sequence
κ and ϵ the error term. We observe for k “ 1, the regression curve is formed
by horizontal straight lines, where we have jumps at some knots. For k “ 2, the
regression curve is also formed by straight lines, and not horizontal as in the first
case. The quadratic and cubic cases (k “ 3 and 4 respectively) are well observed.
However, for k larger, we can’t distinguish which curve represents each order.

Now we look at the problem differently. We fix some order, say k “ 4, and
increase the number of inner knots. Recall that for k “ 4, we have a cubic curve.
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1.2 Some examples and plots of B-splines
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FIG. 3. B-spline regression functions with 8 equidistant inner knots and orders from 1 to 6.

For 0 knots, we observe a cubic function. When we increase the number of knots
to 1, we observe two connected cubic polynomials. When we increase the number
of knots, the number of cubic polynomials also increases. An observation is that,
for k “ 4 in Figure 3 and m “ 8 in Figure 4, the same curve is showed.
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FIG. 4. B-spline regression functions with fixed order k “ 4 and variant equidistant inner knots.
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2 A theorem on rate of convergence

In this section, we provide a general result on the behaviour of the convergence
of projection estimators. This result is Theorem 1 of Huang (1998). First, we lay
down the fundamental of functional analysis, preparing the ground for a deeper
exploration of the subject. In the second subsection, we give the context of the
regression problem, where the notions of empirical and theoretical orthogonal
projections come to the forefront. Moreover, we introduce important conditions
that give us more information about the spaces we are using. In addition, we
decompose orthogonally our problem, simplifying the analysis, and we finally give
our main result. We also give some conditions to be able to apply this result with
B-splines, but the main interest is the general theorem. Huang’s paper provides a
detailed analysis of the convergence rates of projection estimators in the context
of functional data analysis.

2.1 Preliminaries on functional analysis

In this subsection of this second part, we will introduce key definitions and concepts
of functional analysis to know with what we will be working for Huang’s theorem.
Some of these concepts will be distances, Hilbert spaces,...

Take any set M , we then can define the distance function d from M ˆ M to
the real numbers, which satisfies the following three properties. For x, y and z in
M , we have positivity of the distance, that is, dpx, yq ě 0 and we have equality
if and only if x and y are the same points. Moreover we have the symmetry of
the distance, which means that dpx, yq “ dpy, xq. Finally, we have the triangle
inequality: dpx, yq ` dpy, zq ě dpx, zq. Hence, if we have this distance d defined
on M , the pair pM, dq is called a metric space.

Furthemore, in a metric space, say pM, dq, if we take a sequence of points
x1, x2, . . . in M , this sequence is called a Cauchy sequence, if when we take any
radius r ą 0, we can always find some range Nprq P N ´ t0u, depending on r,
such that for any m,n ě Nprq, we are sure that these two points xm and xn are at
most at a distance r. This can be written as dpxm, xnq ă r for any m,n ě Nprq. If
a metric space pM, dq has the property that any Cauchy sequence in M has a limit
in M , the space is called complete.

But how can we actually find a distance? An easy case is when we have a
vector space, as the distance can be induced by the inner product of this vector
space. Take any inner product x¨, ¨y on some vector space V, then this gives us the
norm }x} :“ xx, xy1{2 for any x P V. Thus, by setting dpx, yq :“ }x ´ y}, and using
properties of the scalar product and Cauchy-Schwarz, the three properties of the
distance are verified. In addition, there is a special case of metric spaces: Hilbert
spaces– a vector space with an inner product, where this last induces a distance
for which the metric space is complete. Moreover, a finite dimensional subspace
G of H, where H is a Hilbert space, is closed. This comes from the fact that G
is closed if every convergent sequence in G has a limit in G. Recall that dimG “

n ă 8. Therefore G is isomorphic to Rn with some norm. By completeness of Rn,
every convergent sequence converges to a point in Rn. Under isomorphism, every
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2.1 Preliminaries on functional analysis

convergent sequence in G converges to a point in G. Moreover, in a Hilbert space,
every bounded sequence has a convergent subsequence by Bolzano-Weierstrass.
So if tvnu Ă G converges to some v P H, then by continuity of the linear operations
(addition and scalar multiplication), v must be in G. Hence G is closed.

In this paper we will be interesed on working with Hilbert spaces. An example
of a Hilbert space that we will be using is the Euclidean space, that is a Hilbert
space, where the vector space is defined on a subset of Rn for n ě 1.

Before giving the context of the problem, we will give some definitions and
notation that will be useful. We have for any function f on X , }f}8 “ supxPX |fpxq|.
And we write an ă bn if an{bn is bounded, where an and bn are sequences of
positive numbers for n ě 1. And an — bn if an ă bn and bn ă an. Finally, we define
the notion of OP p¨q and oP p¨q. Let cn be a sequence of positive numbers for n ě 1.
A set of random variables Wn for n ě 1 is a OP pcnq if, for any ϵ ą 0, there exists a
finite Nϵ ą 0 and finite δϵ ą 0 such that

P

„

|Wn|

cn
ą δϵ

ȷ

ă ϵ, @n ą Nϵ,

and Wn is a oP pcnq if for every positive ϵ and δ, there exists Nϵ,δ ą 0 such that

P

„

|Wn|

cn
ą δ

ȷ

ă ϵ,

also known as convergence in probability. Recall that Wn is a Opcnq if there exists
a constant K ą 0 such that |Wn| ď K ¨ cn for all sufficiently large n. We show that
Op¨q implies OP p¨q. By assumption, we have the existence of K such that @n ě N0,
|Wn|{cn ď K. Therefore,

P

„

|Wn|

cn
ą K

ȷ

“ 0.

Now for any ϵ ą 0, choose δϵ “ K, and Nϵ “ N0 ą 0,

P

„

|Wn|

cn
ą δϵ

ȷ

“ 0 ă ϵ, @n ą Nϵ.

We conclude that Wn is OP pcnq.

Now we give the preliminaries of functional analysis needed to understand the
main result and proofs of this paper. First, a linear operator L on some normed
vector space V over K, where K is a field, is a map from V to itself that preserves
the linear structure of V, that is for any v,w P V and λ P K, Lpλv ` wq “

λLpvq ` Lpwq. Then we define the norm of a linear operator as

}L} :“ sup
v‰0

}Lv}

}v}
“ sup

}v}“1

}Lv}.

Now take two normed vectors spaces V1,V2 with norms } ¨ }i, i “ 1, 2. Then
we say that the linear operator L from V1 to V2 is bounded if there exists a finite
constant C ą 0 such that

}Lv}2 ď C}v}1, @v P V1.

7



2.1 Preliminaries on functional analysis

We then define BpV1,V2q, the set of all bounded linear operators from V1 to
V2. Using the norm of the linear operator defined above, this becomes a normed
space. Moreover, the elements of BpV1,V2q are called bounded linear operators,
and if we have V1 “ V2 “ V, we use BpVq for the set of all bounded operators on
V. In the case where V1 “ H1,V2 “ H2 are two Hilbert spaces with x¨, ¨yi, i “ 1, 2,
and for any L P BpH1,H2q, the unique operator L˚ of BpH2,H1q such that

xLv1,v2y2 “ xv1, L
˚v2y1, @v1 P H1,v2 P H2,

is said to be the ajdoint of L. When H1 “ H2 “ H, L is called self-adjoint when
L˚ “ L. The existence of L˚ comes from the Riesz representation theorem. See
Theorem 3.3.1 of Hsing and Eubank (2015).

Now let L P BpHq and suppose there are some λ P K and a non-zero vector
e P H such that

Le “ λe,

then, we say that λ is an eigenvalue and e is a corresponding eigenvector of L.
Let’s look at a special case of linear operator, the linear functional. A linear

functional is a linear operator which maps the vector space V to the underlying
field K, that satisfies the linear property. We have the following useful proposition
when the linear functional is a scalar product with some vector:

PROPOSITION 3. Let x¨, ¨y be any inner product and Z P V. Then, for the linear
functional A :“ xZ, ¨y we have

}A} “ }Z},

where the norm on the left is the linear operator norm, and the norm on the right is
the norm induced by the inner product.

PROOF. We prove it by double inequality. First, let v ‰ 0, then by Cauchy-
Schwarz:

|xZ,vy| ď }Z} ¨ }v}.

as v ‰ 0, dividing both sides by }v}:

|xZ,vy|

}v}
ď }Z}.

Taking supremum over v ‰ 0, we obtain the first inequality. Now for the other
direction, assume Z ‰ 0, and let v “ Z, then we have

}Av} “ }xZ,Zy} “ }Z}
2,

therefore
}Av}

}Z}
“

}Z}2

}Z}
“ }Z}.

Thus for a particular choice of v, we have }A} ě }Z} as }A} is the supremum over
all possible v ‰ 0. Combining both inequalities, we conclude that }A} “ }Z}. ■
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2.2 Context

Finally, as we are working with projection, we will introduce some projection
linear operator properties. We say that P is an orthogonal projection operator
onto a closed subspace M of a Hilbert space H if it is a self-adjoint operator
in BpHq that satisfies P “ P2 (idempotency). In this paper we will refer to
orthogonal projections as projections. Moreover, if M is a closed subspace of a
finite Hilbert space H, then we have the following orthogonal decomposition:
H “ M ‘ MK, where MK is the orthogonal complement of M. Another property of
projection operators is that }P} “ 1 as

}Pv} “ }P2v} ď }P} }Pv} and }Pv} ď }v}.

Also we have that impPq “ kerpidH ´ Pq when the Hilbert space H is finite.
This gives us that if P is the projection onto some space M, then idH ´ P is the
orthogonal projection onto MK. Finally, we see that the only possible eigenvalues
of P are 0 and 1. This is due to the following: take e a non-zero λ-eigenvector of
P, then by idempotency of P:

λe “ Pe “ P2e “ Ppλeq “ λ2e.

Thus λpλ ´ 1q “ 0, so λ P t0, 1u.
Now we have all definitions to start our regression problem, which will be the

content of this next subsection.

2.2 Context

We consider the following regression problem. Suppose we have a predictor
variable X and a real-valued response variable Y that we want to predict, where
X might have an influence on Y . We only know that X and Y have a joint
distribution. We assume that X ranges over X , which is a compact subset of
some Euclidean space. Moreover we assume that X has a absolutely continuous
distribution with respect to the Lebesgue measure, and its density fXp¨q is bounded
in the following way: DM1,M2 ą 0 : 0 ă M1 ď fXp¨q ď M2 ă 8, that is fXp¨q is
bounded away from zero and infinity. We want to study the influence of X on Y .
To do so, we first set µpxq :“ ErY | X “ xs and σ2pxq “ varrY | X “ xs, where we
suppose that these two functions are bounded on X . Also take a random sample
of size n from the distribution of pX, Y q, pX1, Y1q, . . . , pXn, Ynq. Moreover suppose
that the residuals tϵi : 1 ď i ď nu where ϵi :“ Yi ´ µpXiq are independent with
each other, but also independent of X1, . . . , Xn. The main focus lies in estimating
µ.

But first, we have to give some definitions to understand with what we are
working. In this paragraph, we will introduce the necessary material to understand.
Recall that µp¨q and σ2p¨q are defined on X . Consider any function f that is
integrable with respect to the probability measure of the random variable X,
defined over its support X , and set Enrf s :“ p1{nq

řn
i“1 fpXiq. We also set

Erf s :“ ErfpXqs. Using the following functions, we define the empirical inner
product and empirical norm as follows:

xf1, f2yn :“ Enrf1 ¨ f2s, }f1}
2
n :“ xf1, f1yn (2.1)

9



2.2 Context

for any f1, f2 P L2pX ,Rq (square-integrable functions on X with respect to the
Lebesgue measure). But there are also the theoretical versions:

xf1, f2y “ Erf1 ¨ f2s, }f1}
2 :“ xf1, f1y, (2.2)

again for any f1, f2 P L2pX ,Rq. We then have that the theoretical norm is
equivalent to the L2 norm . This last equivalence comes from the fact that at the
beginning of the paragraph, we supposed that X has a density that is bounded
away from zero and infinity. So there are constants M1,M2 ą 0 such that fXp¨q is
bounded above by M2 and below by M1. Now take any f P L2pX ,Rq, we want to
show that there are C1, C2 ą 0 such that

C1}f}L2 ď }f} ď C2}f}L2 .

We have }f}2 “ Erf ¨ f s “
ş

X |fpxq|2fXpxqdx but then we can upper and lower
bound this expression as follows:

M1

ż

X
|fpxq|

2dx ď }f}
2

ď M2

ż

X
|fpxq|

2dx.

Then set C1 “ M
1{2
1 , and C2 “ M

1{2
2 and obtain the equivalence of the theoretical

and the L2 norm.

Let’s work on a more precise space. Take a closed subspace H of the vector
space L2pX ,Rq and suppose that µ P H. We call this subspace the model space,
and it is a Hilbert space with the theoretical inner product defined in (2.2). This
comes from the fact that the space L2pX ,Rq is a Hilbert space with the L2 inner
product. So any closed subspace is again a Hilbert space with the same inner
product. The closedness of the subspace is essential to keep the completeness with
respect to the distance induced by the inner product. Finally, since the theoretical
and the L2 norms are equivalent, and any Cauchy sequence converges with the
L2 norm, we also obtain the convergence with the theoretical norm. And clearly
the theoretical inner product is an inner product, so this proves the claim.

Back to the main subject, the idea is to estimate µ, to do so we will use the
least-square estimate of µ, where we will be minimizing the problem over a linear
space G Ă H of bounded functions such that dimG ă 8 and the dimension
depends on our sample. This space is called the approximating space. As G is a
finite-dimensional subspace of the vector space H, then it must be closed. At the
beginning of the paragraph, we took a sample of size n, thus G can vary with the
sample size n. But the only thing we need is just to be sure that dimG “ Nn ą 0
for any n ě 1. Another property of this linear space G, is that we require it to
be theoretically identifiable, that is if g P G is almost surely equal to zero with
respect to the measure induced by the distribution of X, then g “ 0 everywhere.
Moreover, the space G is empirically identifiable relative to X1, . . . , Xn if the only
function g such that gpXiq “ 0 for any 1 ď i ď n is the null function. Finally,
given a sample X1, . . . , Xn, if G is empirically identifiable, then it is a Hilbert
space with the empirical inner product. This is as the three properties of the
norm are verified. Without the empirical identifiability, we have that } ¨ }n is a

10



2.3 Decomposition of the problem

semi-norm, that is we have symmetry and triangle inequality, but we don’t have
that if }g}n “ 0, then g “ 0. This is why it is important for G to be empirically
identifiable.

Define µ̂ to be the least square estimator of µ, where the minimization is on G.
Then µ̂ “ argmingPG

řn
i“1rgpXiq ´ Yis

2. Since X has a density with respect to the
Lebesgue measure, then the probability distribution of X is absolutely continuous
relative to the Lebesgue measure, which in turn suggests that there are no points
of positive probability. Practically, this means that the probability of X taking
on any single specific value (like Xi “ Xj for i ‰ j) is zero. Hence, any two
design points Xi and Xj are almost surely distinct because the probability that
they would be exactly the same is zero. So we are sure that the points X1, . . . , Xn

are different, and we can find a function, say rY “ Y p¨q, defined on X , that
interpolates Y1, . . . , Yn at these points. Then the interpretation of µ̂ is that it is
the orthogonal projection of Y onto the linear space G. We could think that by
choosing G in a certain way, when we increase the dimension of G, µ̂ converges
to µ. However, µ has not to be necessary in H, so we could expect that µ̂ would
converge to some µ˚, that is the orthogonal projection of µ onto H. Hence, in this
paper we will discuss what are the condition to obtain the convergence of µ̂ to µ˚,
where, as discussed just before, µ˚ can or not be equal to µ. We will study the
convergence with the following squared norms:

}µ̂ ´ µ˚
}
2 or }µ̂ ´ µ˚

}
2
n.

2.3 Decomposition of the problem

We denote Q the empirical orthogonal projection onto G, P the theoretical
orthogonal projection onto G and finally P ˚ the theoretical orthogonal projection
onto H. By using the same notation of the previous subsection, we see that
µ̂ “ QrY and µ˚ “ P ˚µ. We define µ to be the best approximator in G to µ
relative to the theoretical norm. Then using our orthogonal projections, we have
the following property:

µ “ Pµ “ Pµ˚ (2.3)

This property will help us to decompose orthogonally our minimization problem.
We see that we can rewrite the problem as follows

µ̂ ´ µ˚
“ pµ̂ ´ µq ` pµ ´ µ˚

q (2.4)

“ pQrY ´ Pµq ` pPµ ´ P ˚µq.

Thanks to this relation we obtain the following formula:

PROPOSITION 4.
}µ̂ ´ µ˚

}
2

“ }µ̂ ´ µ}
2

` }µ ´ µ˚
}
2 (2.5)

PROOF. We must show that µ̂ ´ µ and µ ´ µ˚ are orthogonal:

xµ̂ ´ µ, µ ´ µ˚
y “ xQrY ´ Pµ

loooomoooon

PG

, Pµ˚
´ µ˚

loooomoooon

PGK

y “ 0.

11



2.3 Decomposition of the problem

We conclude using Pythagorean theorem. ■

More precisely, the component µ̂´µ is called the estimation error and µ´µ˚ is
the approximation error. We now study the estimation error, and we decompose
it into two parts that are orthogonal on the average relative to the empirical
inner product, conditioned on the design points. To do so, we introduce the best
approximation in G of µ relative to the empirical norm. Then µ̃ “ Qµ. Observe
that by the self-adjointness of Q, xµ̃, gyn “ xµ, gyn for any g P G. Now consider the
following decomposition:

µ̂ ´ µ “ pµ̂ ´ µ̃q ` pµ̃ ´ µq (2.6)
“ pQY ´ Qµq ` pQµ ´ Pµq

Again, since Q is its self-adjoint, xµ̂, gyn “ xrY , gyn for every g P G. Taking the
conditional expectation given X1, . . . , Xn, and using the definition of µ, for every
1 ď i ď n, we have ErrY | X1, . . . , XnspXiq “ µpXiq, and therefore

xErµ̂ | X1, . . . , Xns, gyn “ xErQrY | X1, . . . , Xns, gyn

“ xQErrY | X1, . . . , Xns, gyn

“ xErrY | X1, . . . , Xns, gyn

“ xµ, gyn

“ xµ̃, gyn.

Now by definition of conditional expectation, we have Erµ̂ | X1, . . . , Xns P G, and
by the empirical identifiability of G,

xErµ̂ | X1, . . . , Xns ´ µ̃, gyn “ 0,

and so Erµ̂ | X1, . . . , Xns “ µ̃. We then refer to µ̂ ´ µ̃ as the variance component,
and µ̃ ´ µ as the estimation bias. But then

Erxµ̂ ´ µ̃, µ̃ ´ µyn | X1, . . . , Xns “ 0.

This last result gives us that the variance component and the estimation bias
are orthogonal on the conditional expectation relative to the empirical norm.
Therefore, and obtain by the Pythagorean theorem that

Er}µ̂ ´ µ}
2
n | X1, . . . , Xns “ Er}µ̂ ´ µ̃}

2
n | X1, . . . , Xns ` Er}µ̃ ´ µ}

2
n | X1, . . . , Xns

“ Er}µ̂ ´ µ̃}
2
n | X1, . . . , Xns ` }µ̃ ´ µ}

2
n

since }µ̃ ´ µ}2n is deterministic because both µ̃ and µ are fixed once the sample is
fixed.

Combining (2.4) and (2.6) we obtain the decomposition:

µ̂ ´ µ˚
“ pµ̂ ´ µ̃q ` pµ̃ ´ µq ` pµ ´ µ˚

q.

Therefore we obtain the following proposition:

12



2.4 Important conditions

PROPOSITION 5.

}µ̂ ´ µ˚
} ď }µ̂ ´ µ̃} ` }µ̃ ´ µ} ` }µ ´ µ˚

} (2.7)

and
}µ̂ ´ µ˚

}n ď }µ̂ ´ µ̃}n ` }µ̃ ´ µ}n ` }µ ´ µ˚
}n (2.8)

PROOF. Apply the triangle inequality and the two decompositions seen on the
discussion on top. ■

We have completed breaking down the problem and are now set to examine
each term: the variance component, estimation bias, and approximation error.
Prior to studying these components, it is essential to define some conditions on
the approximating spaces. These preliminaries will constitute the focus of the
next subsection.

2.4 Important conditions

The main result of the paper involves two important conditions An and ρn that we
will establish. The first condition requires that the approximating spaces satisfy
some stability constraint. The second one is about the approximation power of
the approximating spaces. Recall that at the beginning of section 2.2, we saw that
the dimension of G depends on n–the sample size. We define An as follows:

An :“ sup
gPG

␣

}g}8

L

}g}
(

.

Since the dimension of G is positive, we have that An ě 1. This is because G will
contain at least one function that is not the null one, therefore An is well defined
on G. As G is defined to be theoretically identifiable and is a linear subspace of
bounded functions (see Section 2.2). Let tϕj : 1 ď j ď Nnu be an orthonormal
basis of G relative to the theoretical inner product. Then write g as follows:

g “

Nn
ÿ

j“1

cjϕj, cj P R.

Then by orthonormality, }g}2 “ }
řNn

j“1 cjϕj}
2 “

řNn

j“1 c
2
j , and by the triangle

inequality and Cauchy-Schwarz:

}g}8 “ }

Nn
ÿ

j“1

cjϕj}8 ď

Nn
ÿ

j“1

|cj|}ϕj}8

ď

˜

Nn
ÿ

j“1

c2j

¸1{2˜ Nn
ÿ

j“1

}ϕj}
2
8

¸1{2

.

Combining both results we obtain An ď

´

řNn

j“1 }ϕj}
2
8

¯1{2

ă 8.

13



2.4 Important conditions

This number An gives us how peaked or oscillatory functions in G can be. For
example if An is large, there could be functions in G that have very high peaks
(when the L8 norm is large) relative to their overall size in the L2 sense. We talk
about the L2 norm and not the theoretical as they are equivalent. See discussion
above. Another example could be when An is close to one, as this would suggest
that functions in G are more regular in the sense that their L8 norm is not
that much larger than their L2 norm. Imagine the case where G has functions
that are very irregular, then it might be able to approximate discontinuous or
highly variable functions well. However, it could also mean that small changes
in the function we are trying to estimate could lead to large changes on the
approximation, which is inderisable in terms of stability. We saw early that An

is finite, so even if G contains functions that might be complex, this complexity
is controlled. Moreover, by finiteness of An we have that functions in G are
not too peaked as to make the approximation process unstable or to sensitive
to perturbation in the input function.

Is this constant An well defined for B-splines? First, fix some degree k, and
let Splkpmnq be the space of splines of degree k with mn knots, using the same
notations that in Section 1, and suppose that

max0ďiďmnpκi`1 ´ κiq

min0ďiďmnpκi`1 ´ κiq
ď γ (2.9)

for some constant γ. Then we have the following result:

THEOREM 6. If G “ Splkpmnq, then

An — m1{2
n

PROOF. See Theorem 5.1.2 of DeVore and Lorentz (1993). ■

This was our first important condition to set, which gives us information about our
set G. Now we look at our second condition. Set ρn :“ infgPG }g ´ µ˚}8. We see
that ρn ă 8 if and only if µ˚ is bounded. This comes from the triangle inequality
and the fact that g is a function in G–linear space of bounded functions. Suppose
this is the case, then

ρn ď inf
gPG

}g}8 ` }µ˚
}8 “ }µ˚

}8

as G contains the null function. By assumption and the discussion in the context
section, we know that G is finite-dimensional, therefore closed in H. Recall that
µ˚ is bounded. So define r :“ }µ˚}8 ă 8 and consider the zero-centered closed
ball B2r “ tg P G : }g}8 ď 2ru Ă G. Clearly this ball bounded so by Heine-
Borel it is compact. We conclude by using the continuity of the following function
g ÞÑ }g ´ µ˚}8. In other words, since it is a continuous function minimized on
some compact set of G, it attains its minimum on this set. Therefore we have the
existence of g˚ P B2r such that ρn “ }g˚ ´ µ˚}8. We see that if there is some other
g1 P G ´ B2r such that ρn “ }g1 ´ µ˚}8, then it’s not a global minimizer. This
constant can be seen as a measure of approximation quality. Since G depends on

14



2.4 Important conditions

n, the more data we have, the more G can change, and potentially allow a better
approximation of µ˚. Thus we would expect ρn to decrease when n becomes
large, reflecting improved approximation as more sample data are considered. ρn
characterizes the target function µ˚ in the context of approximability by G. A
small value means that µ˚ is well-represented by G. Conversely, a large value
might indicate that µ˚ has features that G cannot capture well, suggesting the
need of a more diverse function space for approximation.

As in the case for An, we would like to know when is ρn well defined for B-
splines. We need a condition to ensure that ρn is well defined for B-splines. To this
end, we assume that X is the Cartesian product of compact intervals X 1ˆ. . .ˆX L.
Now let 0 ă β ď 1, we say that a function f on X satisfies the β-Hölder condition
if there exists C ą 0 such that

|fpxq ´ fpyq| ď C|x ´ y|
β, @x, y P X .

In our case, we define |x| “ p
řL

l“1 x
2
l q

1{2 is the Euclidean norm for x “ px1, . . . , xLq

in X . Moreover, given an L-tuple α “ pα1, . . . , αLq where αl ě 0 for 1 ď l ď L,
we set rαs “ α1 ` ¨ ¨ ¨ ` αL and we define the differential operator Dα as follows:

Dα
“

Brαs

Bxα1
1 ¨ ¨ ¨ BxαL

L

.

Finally, let k ą 0 be an integer and set p “ k ` β. Then we say that a function on
X is p-smooth if f is k-times continuously differentiable on X and Dα satisfies
the β-Hölder condition for all α with rαs “ k.

Recall H is a closed subspace of L2pX ,Rq, and by boundedness of µ, we have
µ “ µ˚ (µ˚ is the projection of µ onto H). We let Gl be a linear space of functions
on X l for 1 ď l ď L and G the tensor product of these spaces. Lastly, we suppose
that µ is p-smooth, then for X l “ r0, 1s for 1 ď l ď L, we obtain the following
upper bound for ρn in the B-splines case admitting the following theorem:

THEOREM 7. Suppose k ě p ´ 1, for k the degree of the spline. If we have that
each Gl “ Splkpmnq and (2.9) holds, then

ρn ă m´p
n .

Now we are ready to look at the main result of this paper: Theorem 1 of Huang
(1998).
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2.5 Theorem

2.5 Theorem

THEOREM 8. Suppose µ˚ is bounded and that limnA
2
nNn{n “ 0. Then

(i) (variance component) }µ̂ ´ µ̃}2 “ OP pNn{nq and }µ̂ ´ µ̃}2n “ OP pNn{nq;

(ii) (estimation bias) }µ̃´ µ}2 “ OP pNn{n` ρ2nq and }µ̃´ µ}2n “ OP pNn{n` ρ2nq;

(iii) (approximation error) }µ ´ µ˚}2 “ OP pρ2nq and }µ ´ µ˚}2n “ OP pρ2nq.

Consequently,

}µ̂ ´ µ˚
}
2

“ OP pNn{n ` ρ2nq and }µ̂ ´ µ˚
}
2
n “ OP pNn{n ` ρ2nq.

REMARK. When H is finite-dimensional, we can choose G “ H, which does
not depend on n, the sample size. Then An is as well independent of n, and we
can set ρn “ 0 for each n. Therefore µ̂ converges to µ˚ with a rate 1{n.
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3 Proof of Theorem 8

This section will be divided in three subsections, where in each subsection we will
prove each point of Theorem 8. For the variance component and estimation bias
we will prove it using the empirical norm. The approximation error will be proven
using the theoretical norm. But first we need an important lemma that gives us
the equivalence between both empirical and theoretical norms over G. We will
also be giving proofs that are not given on Huang (1998)’s paper.

LEMMA 9. Suppose that limnA
2
nNn{n “ 0, and let t ą 0. Then, except on an

event whose probability tends to zero as n Ñ 8,

|xf, gyn ´ xf, gy| ď t}f} }g}, f, g P G.

PROOF. We do not give a proof, as it is beyond the scope of this thesis. ■

We have the following corollary that gives us the equivalence between the empirical
norm and the theoretical norm on G.

COROLLARY 10. Suppose that limnA
2
nNn{n “ 0. Then, except on an event whose

probability tends to zero as n Ñ 8,

(i) For g P G,
1

2
}g}

2
ď }g}

2
n ď 2}g}

2. (2.8)

(ii) G is empirically identifiable.

(iii) If }g}2n “ OP pcnq, then }g}2 “ OP pcnq. The converse is also true.

PROOF.

(i) See that we apply Lemma 9 with f “ g. First, we consider the upper bound
for }g}2n:

}g}
2
n “ xg, gyn ď xg, gy ` t}g}

2
“ }g}

2
` t}g}

2.

Take without loss of generality t “ 1 and obtain the desired upper bound.
For the lower bound, we will use the inequality on the other direction:

}g}
2
n “ xg, gyn ě xg, gy ´ t}g}

2
“ }g}

2
´ t}g}

2.

Now take t “ 1{2 and obtain the lower bound.

(ii) First suppose (2.8) holds. Let g P G be such that for all 1 ď i ď n, gpXiq “ 0.
Then }g}2n “ 0, so }g}2 “ 0 as well. Since }g}8 ď An}g}, this implies that g
is identically zero, as we require G to be theoretically identifiable. Therefore
if (2.8) holds, then G is empirically identifiable. The desired result follows
from (i).

(iii) Let }g}2n “ OP pcnq, therefore for any ϵ ą 0, there exists M ą 0 such that

P
“

}g}
2
n ą M ¨ cn

‰

ă ϵ.
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3.1 Proof of variance component

By (i):
P
“

2}g}
2

ą M ¨ cn
‰

ď P
“

}g}
2
n ą M ¨ cn

‰

ă ϵ.

Dividing by 2 we obtain that }g}2 “ OP pcnq since, for any ϵ ą 0, there is some
M 1 :“ M{2 such that

P
“

}g}
2

ą M 1
¨ cn

‰

ă ϵ.

For the converse, the proof is symmetric by exchanging the roles of }g}2n and
}g}2, and instead of dividing by 2, we multiply by 2.

■

REMARK. The first two points of Corollary 10 gives us that G is a Hilbert space
with the empirical inner product.

Now we are ready to prove the three points of the main result:

3.1 Proof of variance component

First, we assume that G is empirically identifiable. This assumption is crucial
since without it, our space G is not a Hilbert space – since we don’t have a norm,
but instead a semi-norm – and therefore the notion of orthonormality is not well
defined. Recall dimG “ Nn, we let tϕj : 1 ď j ď Nnu be an orthonormal basis of
G relative to the empirical inner product. Since µ̂ “ QrY and µ̃ “ Qµ are both in
G, we can decompose them on the orthonormal basis and obtain:

µ̂ ´ µ̃ “

Nn
ÿ

j“1

xµ̂ ´ µ̃, ϕjynϕj

“

Nn
ÿ

j“1

xrY ´ µ,Qϕjynϕj

“

Nn
ÿ

j“1

xrY ´ µ, ϕjynϕj

where we used the fact that Q is a self-adjoint projection operator onto G, and
since ϕj P G, then Qϕj “ ϕj for any 1 ď j ď Nn. Now by Parseval’s identity, and
the orthonormal decomposition we obtain:

}µ̂ ´ µ̃}
2
n “

Nn
ÿ

j“1

xrY ´ µ, ϕjy
2
n.

Observe that,

ErrY ´ µ | X1, . . . , XnspXiq “ ErrY | X1, . . . XnspXiq ´ µpXiq “ 0.
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3.1 Proof of variance component

Therefore, by definition of the empirical inner product, we obtain that

ErxrY ´ µ, ϕjyn | X1, . . . , Xns “
1

n

n
ÿ

i“1

E
”

prY ´ µqpXiq ¨ ϕjpXiq | X1, . . . Xn

ı

“
1

n

n
ÿ

i“1

ϕjpXiqErprY ´ µqpXiq | X1, . . . , Xns “ 0

by the previous observation, where we have used the fact that the residuals are
independent of Xi, so also independent of ϕjpXiq for all i. Moreover, using again
the independence of the residuals, we obtain, for δij the Kronecker delta that

ErpYi ´ µpXiqqpYj ´ µpXjqq | X1, . . . , Xns “ δijσ
2
pXiq.

Recall that we assumed that σ2p¨q is a bounded function, so there exists a finite
M ą 0 such that σ2pxq ď M for all x P X . Putting all these results together:

E
“

xY ´ µ, ϕjy
2
n | X1, . . . , Xn

‰

“ E

»

–

˜

1

n

n
ÿ

i“1

prY ´ µqpXiq ¨ ϕjpXiq

¸2 ˇ

ˇ

ˇ

ˇ

ˇ

X1, . . . Xn

fi

fl

“ E

«

1

n2

n
ÿ

i“1

pYi ´ µpXiqq
2

¨ ϕ2
jpXiq

ˇ

ˇ

ˇ

ˇ

ˇ

X1, . . . , Xn

ff

“
1

n2

n
ÿ

i“1

ϕ2
jpXiqE

“

pYi ´ µpXiqq
2
ˇ

ˇ X1, . . . , Xn

‰

“
1

n2

n
ÿ

i“1

ϕ2
jpXiqσ

2
pXiq ď

M

n
}ϕj}

2
n “

M

n
,

where we used in the second equality that:
˜

1

n

n
ÿ

i“1

prY ´ µqpXiq ¨ ϕjpXiq

¸2

“
1

n2

n
ÿ

i“1

n
ÿ

k“1

pYi ´ µpXiqqpYk ´ µpXkqqϕjpXiqϕjpXkq
looooooomooooooon

δikϕ
2
j pXiq

“
1

n2

n
ÿ

i“1

ϕ2
jpXiqpYi ´ µpXiqq

2

and by linearity of E, we obtain the conditional variance. Finally, we obtain the
desired result by applying this inequality to }µ̂ ´ µ̃}2n:

Er}µ̂ ´ µ̃}
2
n | X1, . . . , Xns “ E

«

Nn
ÿ

j“1

xrY ´ µ, ϕjy
2
n | X1, . . . Xn

ff

ď

Nn
ÿ

j“1

M{n “ MpNn{nq.

Let’s show that this condition implies that }µ̂ ´ µ̃}2n “ OP pNn{nq. Let δ ą 0. Then
by Markov’s inequality:

Pr}µ̂ ´ µ̃}
2
n ą δs ď

Er}µ̂ ´ µ̃}2n | X1, . . . , Xns

δ
ď

MpNn{nq

δ
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3.2 Proof of estimation bias

As this holds for any δ ą 0, define δ :“ M 1Nn{n, where M 1 ą M . Then:

Pr}µ̂ ´ µ̃}
2
n ą M 1Nn{ns ď M{M 1.

Now for any ϵ ą 0, we can choose M 1 large enough so that M{M 1 ă ϵ, satisfying
the definition of OP pNn{nq for the squared norm. Again by Corollary 10 we obtain
that }µ̂ ´ µ̃}2 “ OP pNn{nq. ■

3.2 Proof of estimation bias

Before starting the proof for the estimation bias, we will enunciate an important
lemma:

LEMMA 11. Let M ą 0. Let thnuně1 Ă X such that }hn}8 ď M for n ě 1, then

sup
gPG

ˇ

ˇ

ˇ

ˇ

xhn, gyn ´ xhn, gy

}g}

ˇ

ˇ

ˇ

ˇ

“ OP

`

pNn{nq
1{2
˘

.

First, recall that µ̃´µ “ Qµ´Pµ. Thus, by Proposition 3 applied to the functional
A “ xQµ ´ Pµ, ¨yn,

}µ̃ ´ µ}n “ }Qµ ´ Pµ}n

“ sup
gPG

ˇ

ˇ

ˇ

ˇ

xQµ ´ Pµ, gyn

}g}n

ˇ

ˇ

ˇ

ˇ

“ sup
gPG

ˇ

ˇ

ˇ

ˇ

xµ ´ Pµ, gyn ´ xµ ´ Pµ, gy

}g}n

ˇ

ˇ

ˇ

ˇ

(3.1)

Here, the third equality uses the two following facts:

• Since Q is a self-adjoint operator, and it is the empirical orthogonal projection
onto G, we have the following

xQµ ´ Pµ, gyn “ xQµ, gyn ´ xPµ, gyn

“ xµ,Qgyn ´ xPµ, gyn

“ xµ ´ Pµ, gyn,

where we used Qg “ g for any g P G.

• Pµ is the orthogonal projection of µ onto G, then µ´Pµ “ pidG ´P qµ is the
orthogonal projection onto GK. So xµ ´ Pµ, gy “ 0 for any g P G.

We proved on the previous subsection the existence of some g˚ P G such that
ρn “ }g˚ ´ µ˚}8. We write differently the numerator of (3.1), using that for any
g P G:

xµ ´ Pµ, gyn ´ xµ ´ Pµ, gy “ pxµ ´ g˚, gyn ´ xµ ´ g˚, gyq

` xg˚
´ Pµ, gyn ´ xg˚

´ Pµ, gy.
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3.2 Proof of estimation bias

Thus by triangle and sup inequalities we obtain:

}µ̃ ´ µ}n ď sup
gPG

ˇ

ˇ

ˇ

ˇ

xµ ´ g˚, gyn ´ xµ ´ g˚, gy

}g}n

ˇ

ˇ

ˇ

ˇ

looooooooooooooooooomooooooooooooooooooon

:“I

` sup
gPG

ˇ

ˇ

ˇ

ˇ

xg˚ ´ Pµ, gyn

}g}n

ˇ

ˇ

ˇ

ˇ

looooooooooomooooooooooon

:“II

` sup
gPG

ˇ

ˇ

ˇ

ˇ

xg˚ ´ Pµ, gy

}g}n

ˇ

ˇ

ˇ

ˇ

loooooooooomoooooooooon

:“III

Let’s find some upper bounds for I, II and III. Recall that we supposed that µ was
bounded, and it also ensures that ρn is finite. Then µ˚ is also finite, and we obtain:

sup
n

}g˚
}8 ď }µ˚

}8 ` sup
n

}g˚
´ µ˚

}8

“ }µ˚
}8 ` sup

n
ρn ă 8.

By applying Lemma 11 with hn “ µ´ g˚, we have }hn}8 ď }µ}8 ` }g˚}8 ă 8 and
obtain that I “ OP

`

pNn{nq1{2
˘

. Now let’s concentrate for an upper bound for II.
We apply the Cauchy-Schwarz inequality and Pµ “ Pµ˚ to obtain:

II “ sup
gPG

ˇ

ˇ

ˇ

ˇ

xg˚ ´ Pµ, gyn

}g}n

ˇ

ˇ

ˇ

ˇ

ď sup
gPG

}g˚
´ Pµ}n

ď 2}g˚
´ Pµ˚

}

where the second inequality comes from Corollary 10. Finally, we use the two
following facts of linear operators:

}A} “ maxt|λ| : λ is an eigenvalue of Au

and that
EigenpPq “ t0, 1u

where EigenpPq is the set of eigenvalues of P, where P is any projection operator.
This was discussed on the subsection on the preliminaries of functional analysis.
Thus, we obtain another proof using eigenvalues that }P } “ 1. We conclude with
the following:

II ď 2}g˚
´ Pµ˚

} “ 2}Pg˚
´ Pµ˚

}

ď 2}P } }g˚
´ µ˚

}8

“ 2ρn

Hence II “ OP pρnq. Finally, we find an upper bound for III. Again by Cauchy-
Schwarz we obtain:

III “ sup
gPG

ˇ

ˇ

ˇ

ˇ

xg˚ ´ Pµ, gy

}g}n

ˇ

ˇ

ˇ

ˇ

ď }g˚
´ Pµ˚

} sup
gPG

}g}

}g}n

ď 2ρn
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3.3 Proof of approximation error

where the second inequality comes from the lower bound of Corollary 10. Thus
III “ OP pρnq. Therefore we have

}µ̃ ´ µ}
2
n “ OP pNn{n ` ρ2nq.

And by Corollary 10,
}µ̃ ´ µ}

2
“ OP pNn{n ` ρ2nq.

■

3.3 Proof of approximation error

Let g˚ P G as before, that is such that ρn “ }µ˚ ´ g˚}8. Thus, we have for any
g P G:

}µ˚
´ g} ď ρn and }µ˚

´ g}n ď ρn.

By definition of P—the theoretical projection onto G:

}µ ´ g˚
}
2

“ }Pµ ´ g˚
}
2

“
p2.3q

}P pµ˚
´ g˚

q}
2

ď }µ˚
´ g˚

}
2. (3.2)

Finally, by the triangle inequality and the inequalities above, we conclude:

}µ ´ µ˚
}
2

ď 2}µ ´ g˚
}
2

` 2}g˚
´ µ˚

}
2

ď 4}µ˚
´ g˚

}
2

“ OP pρ2nq.

To prove the result for the empirical norm, by Corollary 10 and (3.2), we obtain

}µ ´ g˚
}
2
n ď 2}µ ´ g˚

}
2

ď 2}µ˚
´ g˚

}
2.

And by triangle inequality,

}µ ´ µ˚
}
2
n ď 2}µ ´ g˚

}
2
n ` 2}µ˚

´ g˚
}
2
n “ OP pρ2nq.

■
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4 Numerical application of Theorem 8

In this section we will apply Theorem 8 with a precise case, using B-splines as
approximating space G.

4.1 Setting up the space and notations

First, the predictor variable X is assumed to be uniformly distributed on the
interval r0.01, 1s. Formally, X „ Unifp0.01, 1q. Moreover, our response variable
Y is given by the function µpXq plus some Gaussian noise. Mathematically, we
have :

Yi “ µpXiq ` ϵi, ϵi „ N p0, σ2
q,

where µpxq :“ x2 sinpx´3{2q represents the underlying true relationship between
the predictor X and the response Y . Then we define the model space H to be the
Hilbert space of square-integrable functions over X , where X is the domain of
X. Finally, our subspace G, the approximating space, is spanned by B-spline basis
functions of degree k with a number of interior knots mn, denoted as Splkpmnq.
Here, we write our knot sequence κ “ tκi : 1 ď i ď mu where m “ mn `

2pk ´ 1q, where we add the 2pk ´ 1q exterior knots to ensure the good behaviour
on the boundaries of the B-splines. Using the same notations as in the first
section, we let tBκ,k

j u
Nn
j“1 be the B-spline basis functions of degree k with Nn

basis functions defined on the interval X and κ our knot sequence.. Clearly G
is a finite-dimensional closed subspace of H, where the dimension of G is equal
to the number of B-spline basis functions Nn :“ pk ` mnq ą 0.

4.2 Steps to obtain the projections

Recall the given function µpxq “ x2 sinpx´3{2q which represents the true relationship
between X and Y . We first generate n samples of X uniformly distributed over
the interval r0.01, 1s. We compute the true values µ :“ µpXq and we add the
Gaussian noise as in the previous subsection. In this case we take σ2 “ 0.1. Then,
we choose the degree k of the B-splines, and define the knot sequence κ.

• Least squares estimator µ̂: we fit the B-spline model to the noisy data:

µ̂pxq “

Nn
ÿ

j“1

α̂jB
κ,k
j pxq

where the coefficients α̂j are obtained by minimizing the following sum of
squared residuals:

α̂ “ argmin
α

n
ÿ

i“1

˜

Yi ´

Nn
ÿ

j“1

αjB
κ,k
j pXiq

¸2

.

This is equivalent to the following problem: finding g P G that minimizes :

µ̂ “ argmin
gPG

n
ÿ

i“1

pYi ´ gpXiqq
2
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4.2 Steps to obtain the projections

but since G is the subspace spanned by the B-splines, any g P G can be
written as:

gpxq “

Nn
ÿ

j“1

αjB
κ,k
j pxq.

Therefore both approaches are equivalent. We can also write this problem
with a matrix form:

argmin
α

}Y ´ Bα}

where Y is the vector of observed values Yi with size n ˆ 1, B the matrix of
B-spline basis functions evaluated at each Xi with size n ˆ Nn, and α with
size Nn ˆ 1. We clearly obtain by the normal equations the solution

α̂ “ pBJBq
´1BJY.

• Best approximator µ˚ in H: Recall that µ˚ is the projection relative to the
theoretical norm of µ onto H, however in this context, µ is already in H.
Therefore we take µ˚ “ µ.

• Best approximator µ in G: The theoretical projection µ is obtained by
minimizing the following theoretical norm:

µ “ argmin
gPG

E
“

pµpXq ´ gpXqq
2
‰

where, again we can write g as a combination of B-splines, and therefore we
obtain:

µpxq “

Nn
ÿ

j“1

αjB
κ,k
j pxq

where the coefficients αj are obtain by minimizing:

α “ argmin
α

ż 1

0.01

˜

µpxq ´

Nn
ÿ

j“1

αjB
κ,k
j pxq

¸2

pXpxqdx.

• Empirical projection µ̃: We fit the B-spline model to the true values µ:

µ̃pxq “

Nn
ÿ

j“1

α̃jB
κ,k
j pxq

where, again the coefficients α̃j are obtain by minimizing the sum of squared
differences between the true values µpXiq and the B-spline model:

α̃ “ argmin
α

n
ÿ

i“1

˜

µpXiq ´

Nn
ÿ

j“1

αjB
κ,k
j pXiq

¸2

.

As in the case for µ̂, by writing µ to be the vector of observed values µpXiq

with size n ˆ 1, we obtain

α̃ “ pBJBq
´1BJµ.
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4.3 Conditions for convergence

4.3 Conditions for convergence

First, we check that, for our case, we have that

An — m1{2
n .

Numerically, we clearly see that this condition is always checked.

4.4 Numerical convergence

Now we plot the least squares estimator, the best approximator in G and the
empirical projection, and see how well are they fitted when we use the B-splines
of fixed degree k “ 3 and with knots mn “ t

?
nu ´ 2. We choose this rule of

thumb to ensure the first necessary condition to apply the theorem, that is the
convergence to zero of the limit of A2

nNn{n. We take three different sample sizes:
n “ 30, 500 and 10.000.

FIG. 1. Numerical approximation of the true function µ.
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4.4 Numerical convergence

We observe that the least squares estimator µ̂ is sensitive to big changes (n “ 30 in
Figure 1). This estimator fits the B-spline model directly to the noisy observations
Y . It minimizes the sum of the squared residuals between the observed data and
the fitted model. As a result, µ̂ is directly influenced by the noise present in
the data, making it more sensitive to fluctuations caused by the noise. Unlike
µ̂, µ is derived by projecting the true function values directly onto the B-spline
space G. This projection minimizes the error in the theoretical norm, ensuring
that µ captures well the essential characteristics of µ as accurately as possible
within the constraints of the chosen B-spline basis. However, the sensitivity of µ
depends on the degree of the B-splines and the number of inner knots, balancing
the trade-off between flexibility and smoothness. Finally, the empirical projection
µ̃ is a combination of the empirical fit and the projection, therefore it tends to
be less sensitive to noise compared to µ̂, especially when the sample is large as
seen in Figure 1. µ̃ is obtained by fitting the B-spline model to the true values µ
rather than the noisy observations Y . This approach provides a more stable and
accurate approximation of the true function because it depends on the structure
of µ, without any influence of the noise.

Now we look at the behaviour of the three components of Theorem 8 with the
empirical norm in Figure 2. Each subplot shows a different component and its
corresponding theoretical convergence rate.
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FIG. 2. Comparison of components and theoretical rates.
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4.4 Numerical convergence

The top plot compares the variance component against the theoretical rate
Nn{n. We observe that the empirical variance follows the theoretical rate closely,
indicating that the variance component decreases with increasing sample size.
The middle plot examines the estimation bias against its theoretical rate Nn{n`ρ2n.
The empirical bias shows a trend consistent with the theoretical rate, indicating
the expected convergence as the sample size grows. Finally, the bottom plot
focuses on the approximation error compared to its theoretical rate ρ2n. The
empirical approximation error aligns well with the theoretical rate, confirming
that this component diminishes as the sample size increases. Overall, Figure 2
validates the theoretical convergence rates outlined in Theorem 8. These results
demonstrate the robustness and reliability of the B-spline approximations in
obtaining the desired convergence properties.
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